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A general method of evaluation of configurational entropy of a liquid mixture is pre- 
sented. It is based on a generalized lattice model with no restrictions due to particle shape being 
introduced. A general formula for the entropy is derived. Achieved results open a way for a rig- 
orous analysis of particle shape effect on mixing process. As an example, a new formula for 
the entropy of mixing of hard spheres in continuous space is derived which may respect a physi- 
cal bound for packing ratio. A systematic approach to improve the model accuracy is pro- 
posed. The resultant alternative models are discussed in details. A comparison with literature 
data and the Mansoori-Carnahan-Starling formula is presented. Very good agreement is 
shown. 

1. I n t r o d u c t i o n  

Evaluat ion of  the configurational entropy and of  other the rmodynamic  proper-  
ties of  heterogeneous mixtures play a crucial role in theoretical analysis of  sorpt ion 
phenomena  in elastic materials. A great progress has been made  in the last 50 years 
in the theory  o f  simple liquids and their mixtures (Temperley [1], Hansen  [2], Row- 
linson [3]). Using statistical mechanics methods a mathemat ica l  description o f  the 
mixture  thermodynamics  was found to be in excellent agreement  with da ta  
obtained by Monte  Carlo and molecular dynamics simulation (Mansoor i  [4]). 
Nevertheless,  because of  the complexity of  the mixtures being considered as 
vapour -po lymer  sorption systems, highly simplified approaches  are usually 
applied in this case based on a lattice model (Flory [5], Prigogine [6]). In Flory 's  
model  [5] each particle is considered as an occupant  of  a single lattice cell, or  o f  a 
sequence of  consecutively adjacent cells (polymer chain). All the cells are assumed 
to be identical and larger compact  particles are omitted. Such an approach  enables 
to formulate  a semi-empirical characterisation of  the sorpt ion processes which 
was found as quite satisfying for homogeneous polymers.  In  papers related to 
the sorpt ion process in crystallized or filled polymers (Kraus  [7], Goldstain [8], 
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Nikitas [9], Milewska [10], Doi [11]) Flory's model is applied only for the elastic 
phase. The question is how far such an approach is legitimate for heterogeneous 
sorbents consisting of particles of which the size is in the same range of magnitude 
but which essentially differ one from another in shape. Coal is an example of such 
a sorbent (Given [12], Marzec [13]). The problem is critical if sorption data are used 
for analysis of the sorbent structure (Milewska [14]). On the other hand the applic- 
ability of Flory's approach to modelling of sorption of vaporous or gaseous mix- 
tures is questionable because of a cell size choice problem. 

During the last years a polymer fluid behaviour has been extensively studied by 
Monte Carlo simulation and by using statistical mechanics methods (Dickman 
[15,16], Deutch [17], Yethiraj [18]). Noticeable improvements of lattice models and 
equations of state in continuous space are made. In our earlier papers [19,20] a model 
for enthalpy contribution to free energy changes due to sorption was developed 
and a simplified approach to description of entropy contribution was proposed. 

The aim of this paper is to give a theoretical background for modelling of 
entropy of mixing in any liquid or polymeric system. A general method is proposed 
for evaluation of the number of configurations of molecular objects in a mixture, 
with no restrictions due to the object's shape being introduced. Our approach fol- 
lows a line of Flory's idea [5], but some generalisations are made. As an example, 
based on this method a new formula for configurational entropy of mixing of hard 
spheres in continuous space is derived. The results and related state equation are 
compared with known formulae [2-4]. Very good agreement is shown. 

2. Primary definitions and model ing methodology  

One considers the number M of molecular objects (particles in liquid state) 
arranged at random (perfectly mixed) in a space having volume equal to the total 
volume of all the objects. The set of particles consists of subsets (referred to as com- 
ponents), each of them containing identical particles (with respect to size and other 
geometrical properties briefly referred to as shape). 

A change in configurational entropy due to the mixing is 

A S  = S M -  S ° = kB  . ( ln ;2 -1n ;2° ) ,  (1) 

where S M,  S ° denote the configurational entropy of the mixture and of its compo- 
nents in their standard state (separated homogeneous liquid subsystems), respec- 
tively, kB, the Boltzmann constant; ;2, the number of configurations of objects in 
the mixture; O °, the number of configurations of objects in the standard state. 

The space of the mixture as well as each homogeneous liquid subsystem may be 
considered as discrete spatial lattices composed of identical cells, each of them con- 
taining one and only one element of a certain object. Thus, each object will be treat- 
ed as a coherent agglomerate of one-cell elements. The cell is assumed to be small 
enough to make possible a good representation of size and shape of every object. 
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One takes that the object is composed of a hard part (hard core) being a rigid 
body with the shape unalterable in any configuration and of a soft part, its shape 
being readjusted to environmental conditions, so the full packing of system objects 
is always reached. The hard part of elastic chain molecules consists of consecu- 
tively adjacent segments, each of them being a rigid body. 

One assumes that the number of objects, as well as the shape of their hard part, 
is the same in the mixture and in the standard state (no chemical reactions occur in 
the mixing process). 

Let x~: denote the number of elements of the kth object; Xk, the number of its 
hard part elements; Sk, the number of surface elements of the kth object, i.e. such 
ones that belong to its hard part and which may be in contact with other objects or 
segments. The symbols x~ and & will be also used to denote the sets of elements 
belonging to kth object and to its surface layer, respectively. If the elements are 
properly small, the soft part represents the free volume of the particle [3]. If the cell 
size is in the segment size range one includes the soft part into surface elements 
(x~ = Xk- Flory [5]), thus admitting their partial deformations. 

Let n denote the total number of lattice cells: n - - Y ~ l  x~. One assumes 
Xk <<n,  (e.g. n / x k  ,-~ 1025). 

Let us consider a completely random assignment of individual elements to the 
lattice cells, irrespective of their occupancy. Such an assignment yields a random 
admissible arrangement (referred to as configuration) of the system objects if: 
(a) all the objects are spontaneously created and properly shaped, i.e. each element 
is placed in a region corresponding to its own object (S-event); (b) each element is 
assigned to a vacant cell, i.e. in any cell a conflict of elements does not occur 
(5~-event). 

Let ~P(~) denote the probability of S; ~P(grlS) - the probability that no collision 
of properly created objects occurs in the lattice. The total number of configurations 
of the system objects is 

M x; 
f2 -- nn:P(~):P(9'lS) = I-I I I  l'lYe, P!l'''k-1}' (2) 

k=l ek=l 

where]e k is the probability that ekth element is assigned to a cell fitting with a shape 
of the kth object, given that elements lk, 2k, ..., ek - 1 of this object satisfy the 
same condition (other objects do not affect eek); p{l.../c-1}ek denotes the probability 
that the ekth element is assigned to a vacant cell, provided that elements lk, 2k, . . . ,  
ek - 1 satisfy the kth object shape condition, they are placed in vacant cells, and 
objects indexed as 1 ,2 . . .  k - 1 are arranged in the lattice with no conflict. 

Equation (2) shows that a formula for ~2 may be derived by a "riffling" process 
in which successive objects should be inserted into the lattice by joining one-cell ele- 
ments in a way admissible with respect to objects previously arranged only. Let D 
denote a set of objects arranged at random in an admissible way in the lattice prior 
to the object k. The symbol 0 will be used for the empty D set; the index of an object 
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(e.g. k), for one-object set {k}; Dk, for D V k, D\k,  for D\{k}.  pD corresponds to ek 
p{1...k-1} used in (2). ek 

It should be noticed that a location order of elements, as viewed in eq. (2), may 
be altered in any way. It does not affect the value for O provided that exact values 
fOr~e k and P~ are used. 

One assumes that elements of the soft part of each object always take an admissi- 
ble position in the lattice (i.e. intermolecular potential is constant and the particle 
packing is affected by repulsive forces only [3,4,6]). Let ek = xk + 1, ..., x~: denote 
the soft part elements for which we have 

= 1 and a~ek : 1In. 

One can take that they have been added to the lattice after the arrangement of 
hard parts of all objects has been completed. So, the notion "object" will refer to its 
hard part only. 

Let OD denote the number of configurations of D-set objects in the lattice filled 
by these objects only; S2Dk is the same as above for the set D and object k added in an 
admissible way. One can write 

f2D~: = ~2D6~, (3) 

where Cff denotes the expected number of configurations of the object k having a 
fixed (chosen at random) configuration of D objects. Let n} ) denote the number of 
vacant cells left by D, 

n~ def n - ~ Xo. (4) 
o E D  

The first element of the kth object may be placed in a vacant cell chosen at will. 
Thus we have 

~1~ = 1 ,  ~ = n f  /n.  (5) 

As an order in which the remaining elements (ek = 2k, . . . ,  xk) are being inserted is 
of no importance, we may do it in such a way as to keep a convenient geometry of 
the object during its formation. A development of eq. (2) is easier, if the inserted 
elements form a simply connected and suitably shaped body. 

Let h denote such a body (being the kth particle in statu nascendi) consisting of 
elements Ix, 2~, . . . ,  e~ - 1, while we are placing the e~th one. Let he denote the 
object obtained by joining the e,dh element to h with the demanded shape being 
kept. A cell chosen for the e,~th element is eligible with regard to the required shape 
of he, if it is in contact with predetermined surface elements of h, or with some sub- 
set of its surface elements. The former case occurs when a new segment starts with 
the e~th element. Let ( ~ e  denote the expected number of cells eligible for joining 
the next element to h. Similarly to Flory [5] one can assume that it depends only on 
the shape and flexibility oft~. Thus, we have 
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Ne~ = O~e/n<~Nek for e~ = 2~, . . . ,xk.  

Let C~ denote the expected number of configurations of~e having a fixed config- 
uration of D objects. One can write 

C~ ~ D = C,,O,,ePe~ for e~ = 2~. . .xk,  (6) 

where C~ is defined for ~; as C~ below eq. (3); pD is the probability that the e~th e~ 
element of~e is placed in a vacant cell, provided that the objects of D and ~ (D~ set) 
are arranged in an admissible way. 

Following eqs. (2)-(6) the expression for C~ may be written as 

(+ Xen oo C~ = "(k " One = C~ n? f ,  (7) 

where 

def cD xk xk 
ll' s = n~C'~k- H pDe+ = ~ < , (8) 

ek=2 era=2 

xk 
C~k def'yk" H ~)t~e (9) 

e~=2 

and ")'k is the number of permutations of elements 2 . . .  Xk; C~k, the number of posi- 
tions of the kth object in the empty lattice if the site of the first element is fixed; l~klf, 
the probability that any of C~ positions is admissible, if considered as having a 
fixed configuration of D, under the condition that the first element o fk  is placed in 
a fixed vacant cell. 

Let 6kS D denote the component of the expression for configurational entropy, 
contributed by inserting of the kth particle into the lattice. According to eqs. (1)- 
(3), (7) it may be expressed as 

6kS D = ks(Inn} ) - lnlP~klf ) + c, (10) 

where c = - k s  In C~k absorbs all factors referred to as internal entropy (Prigogine 
[6]). If the lack of chemical interactions is assumed, c may be omitted as a constant 
being of no importance (its value is the same in the mixture and in the standard 
state). 

3. The probability of  element non-conflict insertion 

The following fundamental formula will be derived: 

n~ (11) 

where a D, is the probability that in a cell chosen as eligible for the e~th element of 
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t~e, the occurrence of an element ei of the object i e D is admissible due to the pres- 
ence of~ as well as of objects belonging to D\i. 

Let ( denote the cell chosen at random for the e~th element from among O~e cells 
adjacent to ~; ~ ,  a body composed of t~ and the cell (. An arrangement of this 
object will be treated as admissible (disregarding the occupancy of (cell) ,  if ~ is 
arranged in an admissible way. Thus, following eq. (6) the expected number of ~ 
configurations is 

C~__~= c D O ~ e  • (12) 

According to eqs. (6), (12) the probability pD may be expressed as 

P £ = C De / C ff.{ = ,Q Dae / at'2 Dtc6 . (13) 

Let C D. denote the expected number of such configurations of a{ (having fixed con- 
figuration of D objects) in which { cell is occupied by an element of i e D. For 
e,~ > 1 it may be only a surface element ofi  (ei e si). The following equality is valid: 

C ~ = C ~ D e + Z C  D. (14) 
leD 

The first component on the right hand side of (14) represents the configurations 
corresponding to the cell { being free, the remaining ones, those with { being 
occupied. 

Using eqs. (6), (14), expression (13) for PeD may be written as 

p D  = n~ 
e,, D D X-" X" C~n~ (15) 

n~ + ~ ~ CD 0 ep D 
ieO ei Esi ~ l~ er 

which yields the form of(11) if one takes the definition 

D D 
D def C~iPly 

O~ ~e i - -  D D " (16) C~ O~ePe~ 

Expression (16) will be transformed to a more useful form. For this aim, one 
can take that the object i E D considered as an obstacle for the e~th element has been 
removed from the lattice, next inserted again into the lattice filled with ~ and D\i 
objects (i.e. Dt~\i set). According to eq. (4) we have 

n l ~ \ i = n ?  + x i - - x ~ .  (17) 

Taking into account two possible location orders for the objects ~ and i, and using 
eq. (3) properly developed, one can write 

j'2D ~ 0 [.-,D\it.~D jQD\iCD\icDt~\ i  (18) "l~D\it"i ~x~ ~ 
cn tc \ i  Let "--ix denote the expected number of such configurations of i (having a fixed 
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configuration of Dt~\/) in which any surface element of i is placed in the cell ~, 
with the position of ~ being fixed. The following equality is valid: 

~ D \ i C D 1 C  D "~- f f 2 D \ i f D \ i ~ e f D ~ \ i  , (19)  

since both sides ofeq. (19) count the same configurations. 
Using eqs. (18), (19) one can bring the expression (16) into the form of 

D~\i~D 

= . ( 2 0 )  Ottcei c Dtc\ipD 
--i --e,c 

The expression for C D~\i may be derived in a similar way as eq. (7) but relations 
(5) cannot be applied in this case due to the demanded contact of i with ~. Let us 
take that a surface element chosen from among si ones as occupant of the cell ~ is 
placed as the first. Then ~li = 1/n and the probability o f  e~li ~\i that the cell ~ is 
vacant for 1 i may be expressed by eq. (11) related to the set Dn\ i  

plg~\i n~ ~\i ,~ pD (nil + x i -  x,,) (21) 
li : Dt~\i , D\i ~ ex 

n f  -t- ~ o e D \ i  Eeo~s i  O~eo n ?  

Using quantities]l ' and /~ i /~ \ i  as given above, one obtains 

c~D~\ i ,,,a ~D [ -~Dt~ \ i  (n~ + Xi - X~) (22)  

where ~ \ i  is the probability defined for i as ~ f  for k, but under the condition 
that the first element of i is placed without conflict in the cell ~. Substitution of eq. 
(22) into (20) gives 

~. ,  ~\i ~.~ t~\i 
i[~ __ t20 i[~ (23) 

/~e i 
D 

OLt~ei ~ .  t~\i ~Dt~\i ' 
i l f  ~ i l f  

~\i . where ~/I} is defined as I~klf (eq. (8)); a°,,e, is the probability that the object i occupy- 

the cell ~ is not in conflict with ~; ~ i ~  i the probability that the object i, whose ing 
first element is placed admissibly in ~ cell, is not in conflict with objects of D\i ,  with 
the lack of conflict with ~ being assumed. 

The interpretation of ~il~\i and I~it ~\i leads to the relation I If  
0 ~ OL D ~ 1 (24) t~ e t 

The quantity a°e, (being the first order approximation to C~e, ) depends only on the 
shape of /and  ~. It is defined as 

dof  
t~ei _ ( 2 5 )  

where superscript ~ shows that only ~ is regarded as an obstacle. 
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Following eqs. (8), (11) one can write the expressions for ~.,:\i and ~.~\i Jig ilf " Their 
substitution into eq. (23) results in 

~ a D ~ \ i  
D a 0 . xi n ~ q - X i _ X  - } - Z . ~ o e D ~ \ i Z . ~ e o e s  ° Leo 

a~e i  : ~e, = -~- Xi  - -  X~ q- E o  e O~\ i  E e o  e So ax teo  

(26) 

where L denotes an object defined for i as ~; ~c, the agglomerate composed of 
and of the object L occupying the cell ~, while an object o e D \ i  acts as an obstacle for 
placing the ei th  element in a ~o cell defined as ~; c~L~eio, a D~\i quantities defined as 

Le o , 

O with a role of ~ being taken by the agglomerate ~L or single L, respectively, and at~ei 
the role of D being taken by the set D \ i  or D ~ \ i  (in the first case ~ cannot act as an 

• • • Dt~\i 
obstacle, according to definmon of~il~ ). 

Equation (26) may be expanded step by step, by using itself for successive all I 
with proper reinterpretation of symbols ~ and D. In every step an object regarded 
as an obstacle is removed from the lattice, next inserted again in two ways: 
(a) starting with a vacant cell chosen at will (the numerator in eq. (26)); (b) starting 
with a cell assumed to be vacant and adjacent to the obstacle considered in the pre- 
vious step (the nominator in eq. (26)). In order to calculate the exact value for a D ~e~ 
the procedure ought to be continued until an empty lattice is reached. However, 
this is impossible to perform because of the enormous number of the steps needed, 

D must be made. thus an approximation to an, 
Equation (26) may be shortly written in the form of 

a D = a ~  p(/~), 
nei ei ex (27) 

where, according to eq. (23) and eq. (26), the quantity B~. is 

\ ilf / 

xt q- Xi -- X~ -t- 2-.~oeDn\i 2-~eo eso a-Le'o" " ~ 
= E In ~-, ~-, D\i I " (28) 

The relation B~. >~ 0 is fulfilled since ~, when adjacent to i, eliminates such obstacles 
for i which might occupy the region corresponding to ~ in any other arrangement 
of i. Thus, from eqs. (24), (27) we can deduce that exp(B~Z~) e (1, 1 / a ° i ) .  

In certain cases it is more convenient to form the obstacle starting with an ele- 
ment which is not placed in the cell ~. The cell for this element must be chosen in 
such a way as to ensure a non-conflict arrangement of the obstacle with respect to 
the object ~ and to meet the tangency condition in the cell ~. In this case the equality 
(21) for e~l/t~\i is no longer valid, hence eq. (11) transforms into the formula 

1 e 
e ~  = 1 - ~--~o E E a~e (29) 

f i E D e i e s i  

and eq. (28) must be completed to the form of 
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x, ( :  
B~D/= - In P~l~\i + E In \n-fi + 2  -- 2 + ~" e,=2 ~ D~\i," 

2.~o eDt~\i 2-~eo eso "Otn~eo / 
(30) 

4. Differential  lattice m o d e l -  cont inuous mixture space 

4.1 .  G E N E R A L  F O R M U L A E  

In order to show the applicability of the presented approach let us consider the 
lattice consisting of infinitesimal cells. It enables us to represent exactly any parti- 
cle of the mixture and to get some insight into the nature of the model. Let us take 
that the free volume n} ~ and volume of each particle x(.), x~) are expressed in rela- 
tion to a certain basic volume (e.g. volume of the first particle); and the surface of 
the particle hard part s(.), in a corresponding surface unit. Let ds(.) denote an infini- 
tesimal part of (.)th particle surface; dx(.), the volume of an infinitesimal element 
of (.)th particle (cell volume). 

Surfacial terms in eqs. (11), (26), (29) and (30) are infinitesimally small in rela- 
tion to volumetric terms n} ~. Thus, using eqs. (8), (11) we can write the formula for 
~kl f in the form of 

lt~klf = exp -- ~ ~ dsi dxk . (31) 

D is of range The symbol dsi formally placed in the nominator will be reduced as a~e i 
dsi. Using ofeq. (29) results in the same formula. 

Similarly, we can get the expression for the quantity B,a (def in eq. (28)) and 
hence for D a~e ' (eq. (27)). Equation (28), while expanded up to the second neighbour- 
hood terms, reduces to the form 

O~Le ° exp(Bw ) - O~Leo e p( ~Lo ) ° o x : . .  ,,07 
oeD\i So n~----+ x; "S x--£ asoJ dxi, (32) 

where 

and 

I Oloe I -- L~toel o.:.o o. .o ,s.l 
n~-+--xii-~o :-X~ dxo leD\i\o sl -'~Sl] 

BffL~°i: fx OZ°e' --{Xnwet dxo. 
o teD\i\o s, n~ + xi + Xo -- X~ dstJ 

(33) 

(34) 
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Higher order neighbourhood terms may be written similarly by proper develop- 
D\i\o " • O\i\o o~O\i\o and c~oe t (hke m eqs. (27), (32) with the suc- ment of expressions for aoe~ , ,oe~ 

ceeding particle being regarded as an obstacle and being removed from the lattice. 
0 O~0 O~0 As it is seen, to evaluate a value for O~r,e,D, the geometric factors: C~e , ,eo, oe~, 

Oe~eoO, o~Owet, a,~we~O . . .  must be found for each pair of surfacial elements of the two 
objects which are considered as being in conflict. 

Following the eq. (25) the value for a 0  may be calculated using the formula 

(35) 

where V ~ is the volume of a region in which a certain selected point of the object i 
can be located, while its surface element ei is placed in the cell ~, providing that no 
element of i is in conflict with any element of ~;; Vie, the volume of a region in which 
the same point of the object i can be located when the considered surface element 
is placed in the cell ~, disregarding possible conflicts of this and other elements of i 
with elements of n. In the same way, the values for a~,eo°, n0~oet, n°~oet may be calcu- 
lated if the volume in the numerator of eq. (35) is found in such a manner as to 
exclude conflicts of the obstacle o or l with suitable agglomerate ~c, Lo or ~Lo, 
respectively. 

Let index o denote a particle being considered as an obstacle; a~o,-° B~o,-D [BOo, 
values for Cede o0 , B~eoD, B~eo, respectively, averaged over the surfacial elements So, ai, 
specific surface area of the oth particle. Equation (31) may be rewritten in the fol- 
lowing form: 

where  (BDo)P denotes the pth order product of terms B~o (in the general case, the 
multiplication of functions/~o is not commutative). Let O p denote a sequence ofp 
indices (each of them representing any particle o e D). The double index oi will be 
used to differentiate between obstacles, thus Op = {Ol, o2,. . . ,  Op}. Let us define the 
scalar product ® 

(36) 

(37) 

where Cr~k[OP ] denotes a vector ofpth  order factors G~k[Ol,..., Op] depending only 
on geometrical parameters of particles e;, o l , . . . ,  Op: 

(38) 

The function gP[n, O] gathers all geometrical terms associated with (Xo, ...)Cop) in 
consecutive series nested in B ~ ,  B~o2, B~o,o2, • • -, (see eqs. (32)-(34)). The lack Of Xo 
in the set D and the volume Xo - x,~ may be neglected as being of little importance. 
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A particle considered as the pth order obstacle contributes into the factors G~:[D], 
starting with that ofpth order up to infinity. Forp = 1,2, 3, we have 

~0 
gl[o1]  de_f aot " ~o1 

dSol ' (39) 

6o 6~o -o 
__ CEt~O102 ) g2~[o1,02] def aol" not ao2" ( OlO 2 - -  

dSol dso2 ' (40) 

-o [a - &o 6~o 
g3[o1 ,o2 ,  o3] def ao, "°tn°' I 02 2~___°102 a03 ( 0203- 010203) 

- -  L aso2 aso3 
-o ~o ~o )7 

ao2 • O £ / ~ O l O 2  a03 • ( 0203 ~ 1 ~ O I O 2 0 3  j 
0[ao0 0 o0] -( 0102- ( 0,03-  0103) 1 a o l ' a ~ l  02 Cz~OlO 2) aos" 

(41) 

The first term in the square brackets in eq. (41) represents ~o, o2, the second one is 
/~°~o,o 2 and the third one is the second order element 0.52~0~Ol - ~o~ in the series shown 
in eq. (36). 

Let (OPlil)c denote the cth combination of l identical indices (representing the 
same particle) in the sequence Op (l <~p). The following equality is valid: 

p P (P) p-1 

By using symbols (37) formula (36) may be expanded up to infinity and, next, 
formula (10) may be expressed as 

{ 
_ \o~D / 

(43) 

By summation of all terms 6kS D corresponding to consecutive particles being 
placed in the lattice we arrive at a rigorous formula for configurational entropy S M 
of mixture. The order in which particles are added (i.e. summation order) should 
not affect the value o f S  M. Let us consider a mixture of J components, each of them 
having identical particles. The summation over the set of the mixture particles 
may be split into summation over the sets of identical particles belonging to the con- 
secutive components i -- 1, ..., J. Let us take that the kth particle (being inserted 
into the lattice) belongs to the j th component. The coefficients GPk[OP ] may be 
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attributed to components and to individual particles as well (C_~k[OP ] = G~j [OP]). 
Let Mi denote the total number of ith component particles in the mixture; mj, the 
number of particles of thejth component arranged in the lattice prior to the kth par- 
ticle. Thus, the free space n} ) available for the kth particle is 

j-1 J j-1 
n~ = n -  E Mix i -  rnjxj = E Mix; - ~-~ Mixi - rnjx j (44) 

i=l i=l i=l 
and 

j-1 
Xo = ~ Mixi + mjxj. (45) 

o~D i=1 

While expressing the numbers n, Mi and rnj in moles we can treat mj as a continu- 
ous variable (with a negligible error), and perform the summation of the terms 
(43) over the set ofj th component particles by integration with dmj = 1/(Avogadro 
number). 

Let vj denote the volume fraction of the hard parts o f j th  component particles 
in the mixture 

der Mjxj 
'Vj -- (46) 

n 

By integration of formula (43) (with respect to (42)) and summation of the resul- 
tant terms corresponding to consecutive components we arrive at the general for- 
mula for SM: 

J { gl °° I(  ~-'~ II-qQ Jo~=l ) q SM = kBj~=I Mj(1-1nMj - A°) -TEJ q=2 1-- i=1 vi Vo Q-) ~[oql 

l'l °° ( J - 1 )  1-q J-I ) q 
-t'- ~jjEq=2 1--  E'Oii=l ( o~=1 v° @ A q [ o q 

F(J) n A° 1 - E v i  Inn 1 - ~ v i -  1-i~=lvi Inn 1 -  ~i 
Xj i=1 i=1 

- v o A ) [ o ]  Inn 1 -  v i  - v o A ) [ o ]  Inn 1 - ~ v i  , 
Xj [o=1 i=1 

(47) 

where the term Mj(1 - l n M j )  ---_ - ln(Mfl)  is added in order to respect indistin- 
guishability of particles within components; A ° denotes a constant; A q[O q], vector 
of geometrical factors A~.[O q], which are defined as below (see eqs. (37), (42)): 
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(a) the constant A°: 

o o  

A ° de~ 1 + Z(-1)PpG~.[jP];  (48) 
p=l 

(b) thefactorsA)[O 1] = A)[o]" 

p 
A) [O x] def Z (  - 1) p Z G~[(OP[jp-1)c]; (49) 

p=l e=l 

(d) the remainingAq[O q] (q = 2, 3,. . . ,  ~ ) :  

O~3 

Aq[oq] def Z ~"~ (--1)P-I (~) (q/) 
= l -  1 ~ Z GP[((Oqf-q)PIJP-t)d]" (50) 

p=q l=q c=l d=l 

As the value for S M is not affected by the order of components in eq. (47), the fol- 
lowing equalities are valid: 

A ° = 0 (A ° does not depend on j ) ,  (51) 

xiAy[O q] = xjAq[O q] for each set {i,j, ol , . . . ,  Oq}, q > 0 .  (52) 

Let 77 M denote the fraction of the hard part of all particles in the mixture, i.e. the 
average packing ratio of particles 

T]Mdeflj~l M j = x j .  (53)  

Due to eqs. (51), (52), the formula (47) reduces to the form of 

J 
sM= k. M,. 

j=l 

x 1-1nMj -A)[j]( lnn + l n ( 1 -  TIM))--Z (Y'~'°Llv°)q-l@Aq[J' 
q=2 (1 -- ?~M) q-1 " 

(54) 

The configurational entropy of the mixture components in their standard state 
(pure liquid state) may be expressed using eq. (47), but for each individual j the 
value for vj ought to be computed as related to the component volume nj = Mj x *° 
(x] ° - particle volume in its standard state), and Vo = 0 for o = 1, j - 1 must ~e 
taken. Let rlj ° denote the hard part fraction (packing ratio) in the volume ofj th com- 
ponent particle in its standard state, 
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od.f  
,Tj x;O (55) 

If no volume changes occur in the mixing process and rl~ is the same for the all com- 
ponents we have r/~ = 77 M. Let Aq denote the value of Aq[ j  q] (for identical parti- 
cles). Using the quantity rlf and eq. (47) we arrive at the formula 

J 

s° = k .  } 2  Mj 
j= l  

{ × 1 - l n M j -  n 1 

which reduces (due to eq. (51)) to the form 

J 

s° = Mj 
j= l  

x 1 - 1 n ) k I j - A l ( l n ( M j x ] ° ) + l n ( 1 - r l ; ) ) - y ~  A q . 
q=2 

in(Mix]O(1 _ rl~) ) _ ~7) A q , (56) 

(57) 

4.3. APPLICATION TO MIXTURES OF SPHERICAL PARTICLES 

Let us recall eq. (35). While assuming the hard parts of the particles n and obsta- 
cle o to be simple solid figures, an accurate expression for a ° may be derived. In 

t~eo 

particular, for many small molecule substances we can take that the hard part of 
each particle is a sphere, thus arriving at the well-known mixture of hard spheres 
[1-4]. In this special case a°~eo = a,~o-° for any surfacial element eo, hence it will be 
shortly referred to as a ° .  

The way in which the kth particle is built has no effect on the final expression 
for the entropy. Thus, let us take that n is enlarged by joining infinitesimal elements 
on a spherical surface, as it is shown in fig. 1. The number of elements neighboring 

cell within the layer is mostly two. Other cases (one or no neighbour) are of no 
importance. Let Ro denote the radius of the oth particle (Xo = (47r/3)R3o; 
ao = 3 /Ro) ;  rk, the actual value for the radius of n. A solid in which the center Oo of 
the oth sphere may be placed when the oth sphere has one and only one element in 
conflict with ~ cell is rather complicated, as schematically shown in the fig. 1. How- 
ever, the expression for V2¢ is quite simple and it has the following form: 

(Ro + rk) 2 
V '~ --  a s o a r k .  (58) o¢ 



J. Duda, J. Milewska-Duda / Evaluation of configurational entropy 83 

-" c" D dc" '~ .  
I"" OoIOCUS(~or)~'~F'~ ~ ' " " -  B D 
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[ t  ceill ...... -'--=:7~ 

t rk'drk " " ~ /  

Fig. 1. The locus of the oth sphere center with an element eo being in conffict with the cell ~ placed 
on a spherical surface of~. 

In order to prove the above formula we notice that the effects of rotation of the 
oth sphere around upper and right edges (CDB) of the cell ~ are compensated by 
identical effects for the left and lower edges (BAC) (see fig. 1). 

It may be easy shown that the volume Vo~ is 

~7o~ = 47rR2o drk . (59) 

Thus, the expression for a ° has the form 

0 (Ro + rk) 2 
a,~ o - 4~rR2o 4 dso. (60) 

Notice that eq. (58) (and hence eq. (60)) is also valid for any pair of objects having 
curvature locally smooth around the considered points (Ro > 0 and rk > 0). Thus, 
generally, Ro and rk in eq. (60) might be treated as local radii of curvature. 

Using eq. (60) we can derive the accurate formula for the first geometrical factor 
Glk[o] (see eqs. (38), (39)). It has the form 

L rk)2drk ( R k )  3 R,(Ro+ = 1+  -1  (61) a [o] = 3 K 

In order to get some insight into the nature of our model let us apply the above 
to express the first order approximation ]PIIf to the probability ~klf. According to 
eq. (36), after simple transformations it may be written (with negligible error) as 

[ 41r(Ro + Rk)3- R3o] 
Pllf  ~- H 1 -  . (62) 

oeD 3 n~ 
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The expression in the square brackets is approximately equal to the probability, 
that a free cell chosen at random for the center of the kth sphere is not placed within 
the inadmissible region surrounding the oth particle, as shown in fig. 2. Such 
events, concerning a position of the kth sphere center related to individual particles 
o, are mutually independent ones. Thus, the probability of non-conflict location 
of the kth sphere is equal to the product of probabilities of the above events, which 
is expressed by eq. (62). Higher order terms in eq. (43) correct this value due to the 
presence of inaccessible regions (fig. 2), i.e. due to the impossibility of complete 
overlapping of inaccessible regions in the lattice. 

In order to derive the formula for G2[o 2] (see eqs. (38), (40)), let us take that the 
object ~ is a sphere with the radius rk, and the first order obstacle (i.e. the particle 
Ol) is rebuilt by joining consecutive circular layers, starting with any surfacial ele- 
ment placed in the cell ~. It is noteworthy, that such a forming way might also be 
used for the kth sphere to derive the formula (61). The shape of the object ~; and cor- 
responding positions of the oth sphere center are shown in fig. 3, and the resultant 
inadmissible region is illustrated in fig. 4. If applied for the obstacle oi, this forming 
way gives object Ol tangent to ~, thus it allows us to use the relatively simple eqs. 
(28) (instead of eq. (30)) and next, to apply the formula (40). The former may be 
written as 

/o L[ 3 3 R~ rk ] ( o,o~ - a,~o,o~) 
G~[o,,o21 =Ro, Ro2 1 + -R-~--_ ] dxo, drk. (63) 

I 

Ol 0 O~ 0 It is shown in fig. 5 that ( o,o~ - ~o,o2) is non-zero only for circumferential ele- 
ments of each layer of Ol, within a range of the angle denoted as qS. For the whole 

Fig. 2. Conflictable locations of the center of the kth particle being formed as a ball ~ in a neighbour- 
hood of an obstacle o. 
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/ 

/ /  0 o locus (Z,ro~) 
O k / 

! \ \  ,, 

Fig. 3. The locus of the oth sphere center with an element eo being in conflict with the cell (, if the 
kth particle is built in the form of the spherical segment n. 

particle O1 (with n being fixed) it results in a region of which a section is shown in 
fig. 6 as the striped area. By integration over this region and using eqs. (35) and (59) 
one can prove that 

0 0 loci 

r eg i on  

Fig. 4. Conflictable locations of  the center of an obstacle o if the particle k is built in the form of a 
spherical segment n. 
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/ 
/ 

/ 
/ 

01 / 

Fig. 5. Boundary positions of an obstacle o2 (conflicting with a circumferential element of the particle 
ol) related to the single o~ and to the agglomerate ~ol. The particle ol is rebuilt as the spherical section 

ob ~ is the sphere. 

fx  0 a0 3 Ro~rk (~o~o2- ~o~o2) dxo~ - (64) 
ao2 dso2 Ro2 Rot + r 

Ol 

Af te r  subs t i tu t ion  o feq .  (64) into eq. (63) we arr ive at  the f o r mu l a  

9 R 2 + 3  R3 (65) 
G~[01, 02] - 2 Ro~Ro---~2 R2~Ro----~2 " 

The same result  m a y  be reached  in a more  general  (but  also more  compl ica ted)  
way,  by  fo rming  o f  the 01 th part icle  as a g rowing  sphere 01 like the k th  par t ic le  (see 

Fig. 6. Region representing the result of integration of the function (a°o 2 - n °,o2) over the volume 
of an obstacle ol being formed as the spherical section ol tangent to ~. 
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fig. 7). To meet the tangency condition, the center of ol must  be placed on a spheri- 
cal surface having radius (Ro~ + rk), thus eq. (30) should be applied to express B~o ~ 
and to derive the formula for G 2. Consequently, each element of  02 ought to be ana- 
lysed as a possible occupant of the cell chosen as the center ofol .  The regions corre- 
sponding to a ° and a ° are shown in fig. 7. The area enveloped by the thick- O 102 /~O 102 

ened line has to be subtracted as contributed by a°o~o2. 
In the same unified way, effects of further neighbourhood may be analysed 

with a proper spatial configuration of spheres representing consecutive obstacles. 
Let • denote a spatial system (agglomerate) of  spheres being formed due to pre- 
vious steps of  the procedure, except for the foregoing one; op-1, the object being 
rebuilt as the obstacle in the former step; %, the currently analysed obstacle. The 
value for c~ ° is .%_lop 

(Rop+ro. I )2  . 

Ot 0 = 4r rR2p ~ ; _  1 also, 
*%-1o~ 

0 

if a position of the opth sphere center 

does not imply any conflict w i t h . ,  

if a conflict of  op with • occurs.  

(66) 

In order to get the coefficient G3[Ol, 02, 03] a suitable three sphere system should 
be analysed (see eq. (41)). The problem is very involved and till the present day we 
did not  find any analytical formula for s ° to say nothing of  higher order t~o 10203 ' 
terms. 

Let us try to deduce an approximating formula for AS using eqs. (48)-(56) and 
having the accurate formulae for G~ (eq. (61)) and G~k (eq. (65)). By substitution of  
G) and G } into eqs. (48)-(50) one can get the following equalities: 

o 2 

s ,  S 

C~ o - -  C~ 0 Fig. 7. Region representing the result of integration of the function ( 0,02 ~,o2) over the volume 
of an obstacle ol being formed as the sphere ol in a neighbourhood ofn. 
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OQ 

A ° = 9 + Z ( - 1 ) P . p .  GP[j p] = 0 ,  (67) 
p=3 

( & , ~ 3  R" oo p 

.4).[o1=- \RoJ +9~oo+ Z ( - 1 ) P Z  G~[OPl[JP-I]' 
p=3 c= 1 

(68) 

R .3 9 /~ 

o o ,  , (I) (2') 
+ ~ ~ (~1) 1 - _  ~ ~ Gp[((O t f-2~Pjc jp-t~ lid, • (69) 

p=3 1=2 c=l d=l  

While bearing in mind that xj = ~ R 3, it is evident that eq. (52) can be fulfilled for 
any set {i,j,  o~,.. . ,  Oq}, and q > 0  (i.e.: xi.Aq[O q] =xj.Aq[oq]) if and only if 
Aq[o q] are of the form 

AJ[O q] = R~]Fq(Ro~,Ro2,...,Roq), (70) 

where a function Fq( ) does not depend explicitly on R:. 
In order to get some insight into a structure of ]Fq (), let us consider the function 

exp(J3°~o) which represents the effect of the second order obstacles on ~ f  (see eqs I 
(36), (40), (41)). Using eqs. (60) and (64) one can show, like in eq. (63), that the con- 
tribution A~c o Of~o to the function G~k[OP ] (p > 1) has the following form 

RPo -1 3P / 1R3 3 3) R~ _4_ 3 Rk AP ° -- 
(Ro)P -1 (t 7 - 1)! k 3 R3o 2(P - Ro 2 _ ~(p - 3)(p - 2) R---~ 

_ ( p - 3 ) ( p - 2 ) ( p - 1 ) 6  ln(l+~---~ko) 

~ ( - - 1 ) t ( p - - 1 )  R t -3- (R°+Rk) t -3  } (71 )  

--  ,=4 7----3 t (Ro ~- Rk) t-3 ' 

where (Ro) p-1 denotes the product (Ro2 " ... • Ro,); o, a particle acting as the first 
order obstacle (o ¢ O). The factor (3/Ro) p-1 represents the product (ao) p-1 (see eqs. 
(40), (41)). In particular, for p -- 2 the above formula reduces to eq. (65), and for 
p = 3 it may be used as an approximation to G3[O 3] 

9 R~ (72) 
G3k[Ol' 02'  03] ~ 2 Ro~Ro2Ro3 

The coefficient Aq[O q] (see eq. (50)) consists of terms G~.[OP] with a subset of 
p - q indices being substituted with j (the kth particle belongs to the j th  compo- 
nent). Notice that f o r p >  3 in eq. (71) we must take Ro = Rk = Rj and q = 3, as eq. 
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(70) has to be satisfied. It means that A~o contributes only into A~ [03] and only 
with terms proportional to R3/ (Ro)  3. In the same way one can also show that for 
q = 2 formula (71) yields terms proportional to R 2 / ( R o )  2 only. Terms correspond- 
ing to other substitutions (Ro, = Rj, oi ¢ o) shall be canceled in proper series defin- 
ingAq[oq]. 

Let us recall the function C*k[OP ] defined in eq. (38). Let f l [oi , . . . ,  Op-2, Op-1, Op] 
denote the function integrated over Xp-1 in the formula for ~o,...op_2o,_,op (like in eqs. 
(32)-(34)): 

-0 -0 
fi[oi, . . . , Op-2, op-1, Op] def aop ( ao,_,o, -- ao,..o,_2%_,o,) (73) 

Let 6~[0 p] denote the first order contribution of obstacles {Ol,..., Op} to the factor 
gP~ [OP]. It may be found recursively: forp = 2 

-0 
def ao, a~o , (74) 6',~[o,,o21 de=f fi[/~,O1,O21; b 2 - dso, ' 

and for consecutivep > 2 

(~IR[o1, OP--2, O,] de d ~1[O1, OP-21./~[O,_20,_10,1 
op-3 

+ ~ ~,(fl[Op-z, op_l ,Op]-  fl[oi,...,Op]), (75) 
Oi~t~ 

where 

bPo, d =f _bPo_/  for oi = ~, o l , . . . ,  Op-2 (76) 
dso, 

and 

0,-2 aop~O _,o~ (77) 
b'o,_, dod b'oT' also. 

Ot:t~ 

Based on the above formulae and bearing in mind the expansion for functions 
exp(~}o, ) in series one can deduce that the function ~ [ 0  p] is a sum of products, 
each 0}" them consisting of subproducts of factors (ao~ • 6°,._o,_,o,) or f i [o i , . . . ,  or]. 
Each product starts with the factor ( % .  6 o ) which appears only once. The ~o, 
remaining subproducts may be of order from 1 to p, with only last element in the 
sequence [o i , . . . ,  or] being altered. Each two neighboring factors involve at least 
one common index in the latter part of sequences, i.e. [... Or-l, or] [... ox, Or+l] or 
[... or, or+l] [... or, ol+2]. Moreover, any substitution of any index in the sequence 
[oi . . . ,  or,...] implies the same substitution in each other sequence containing this 
index. 

In order to reach the function G~[ol . . .  Op] the integration of g { [ o l . . ,  op] over 
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Xo,_~,..., xk has to be done (see eq. (38)). By analogy to eq. (71), the result may be 
written generally in the form of 

GPk[OI " • "° l ) ]~-~- I~(Rk 'e° l  "" "Roe)  -J- Z I ~ f i ( R k ' e ° '  * " e ° p ) f i ( R k ' e ° l  " " * e ° p )  , ( 7 8 )  
i 

where F(.), Nil(.) denote polynomial functions of relative radii;f.(.), a nonpolyno- 
mial function corresponding to the ith product in g{[ol. . ,  op]. The polynomials 
/ '(.) and F~q(.) may be of order 3p, as each factor in (75)-(77) contributes to the 
nominator with R3o . 

While considering the factors A q [O q] defined in eqs. (49), (50) we are interested 
in functions Gf[jP-q, 0 q] obtained by substitution ofp - q elements in O p withj.  
Before such a substitution, monomials N(O q) obtained in F(.) or in Fjq(.) may be 
written as 

eI21~ (Ri)" I I  (R°)'. (79) 
~/~( o q )  = (Rj)l; " l.l.---~. . R---To, 

i=1 i o=1 

where i points to the elements of O selected to be replaced byj. In any case, at least 
one monomial of form (79) contributes to Aq[o q] as the factor R 3 must be 
extracted (see eq. (70)). 

Let us recall eq. (68). It shows that for q = 1 the sum of the 3rd and higher order 
terms does not yield second order monomials (R~/R2o), albeit according to eq. 
(79) it might be possible. Similarly, in eq. (69) the first order terms do not appear. 
These facts and the form ofeq. (71) suggest that forp > 2, 

loi>2. (80) 

Let us take that the above inequalities (concerning li and lo) are valid. It allows us 
to rewrite the function (79) in the form 

" ~-[ (Ri)l" ~'i (R°)l° (81) 
~/[ l (oq)  = (Rj)I/ ?='1[ --~i o-1 R- - -~ '  

where new lie [0,p - q] and new lo e [0, q]. 
In order to provide some basis for analysis of the consequences of the above 

assumption let us propose also an alternative model consisting of monomials 
 2(oq) 

• ( R , ) "  = (Rff, " f I  ( )to 
i=1 i 0=1 R2 

(82) 

By virtue ofeq.  (70), a monomial ~l[m(o q) (being of form either (81), i fm = 1, or 
(82), ifm = 2) contributes to ,4].[0 q] ifandonly if'. 
(1) it is a component of T)~(.) in eq. (78) and the corresponding functionj~(.) is 

not affected by Rj and all Ri, o r  else it is contained in/ ' ( .)  
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(2) the following equality is satisfied: 

p-q 
E l i  ----- m(p - q) - / j  + 3. (83) 
i=1 

All remaining components of the function (78) are reduced by identical terms or 
yield a constant value due to substitution of Rj. 

Based on eqs. (67)-(70) with respect to (80) we can conclude that the coefficients 
/1). [o] and A2[O 2] are expressed by the following formulae: 

A)[O] = - ( R J ' ~  3 (AI  = _ 1 )  . 
\ R o ]  ' 

R3 (A 2 3) (84) 
C o  = 3Ro  e,o----- , = . 

At the present stage, the higher order coefficients Aq[O q] (q > 2) may be only sup- 
posed as some functions taken arbitrarily. 

Let G p denote shortly the value for G:[j p] which does not depend o n j  (the fac- 
tor G~ [] for identical particles). According to eqs, (51) and (67) we have 

Oo 

E ( - 1 ) q p G  p = - 9 .  (85) 
p=3 

While respecting the formulae (84), eqs. (68) and (69) may be rewritten in the 
form 

oo p 
~ ( - 1 )  p ~ Gf[(oPIjP-I)c ] = -9  Rj (86) 

Ro p = 3 c= 1 

~"~'-~°° p 1)~-1 E Z G : [ ( ( O  (12) 9 R2 L. . jL . .a(-  .1-2 p .p-l 
p=3 l=2 l c=l a=l [J )clJ ) a ] -  2Ro, Ro2 

(87)  

One can prove that the following equality is valid: 

i=2 z -  1 = ( - 1 ) "  . (88)  

Notice that the replacing of functions G~[] in formulae (86) and (87) by monomials 
GPRj/Ro and Gp. R}/(Ro~ Ro2), respectively, brings the series (86) and (87) to the 
form of(85). It allows us to the conclusion that forp > 2 a term obtained by substi- 
tution ofp - 2 arguments withj  in the function G~.[OP], if averaged over all possi- 
ble combinations c and d of the subsetj p-2 within the sequence O p ( j  ~ O), is equal 
to G p. R2/(Ro~Ro2). Similarly, a substitution ofp - 1 arguments of Gj[OP] wi th j  
results at average in the monomial G p. RffRo. 
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Let us assume that the above conclusion is valid for any q > 2 as well, i.e. that 
for anyp > 2, q e [3,p] and 1 E [q,p] one can take 

p l .l-q p .p-I avg a j [ ( ( O  ~ )c~ )d] = GPR3Fq[Oq], (89)  

where the symbol av=g denotes equality related to the left hand side function aver- 
aged over all combinations c and d; Fq [O q] is a function such that Fq [jq] = 1/R 3. 

As far as the above hypothesis is true the formula (50) may be written in the fol- 
lowing form: 

Aq[oq] = Z Z ( _ GPR3Fq[O q] = AqR3Fq[Oq] . (90) 
p=q l=q 

Basing on eq. (88) one can prove by mathematical induction that 

~_~ p p _ t ( l ) ( ~ )  oo P (91) ~ ( - 1 )  = Z( -1 )P-qq(q  1) 
p=q l=q l--1 P=q -- " 

Thus, the formula for the coefficients A q has the form 
o o  

P G p (92) Aq = Z-."(-1)P-qq(q - 1) " 
p=q 

Let us take that all terms essentially contributing to Aq[O q] originate from the 
polynomial F ( . . . )  only (see eq. (78)), and they are of the form of either (81) or 
(82). 

In general, the first may not be true, as the function (78) may contain compo- 
nents in whichj~ ( . . . )  is not affected by Rj, whereas monomials having the form (81 ) 
or (82) are present in Ffi(...). Equations (74)-(77) show that it may occur if only 
higher order obstacles are substituted with j,  as factors fl(oi,..., or] yield generally 
nonpolynomial terms (see formula (71)). Moreover, the inequalities (80) may not 
be valid for terms involving more than 2 obstacles. Nevertheless, the above assump- 
tions are legitimate if: 
(a) components being of form Ffi(R 3, Ro) .fi(Ro) are reduced by identical terms 

in a formula expressing accurately G~. [jP-q, 0 q]; 
(b) series of the components as above converge (with p--~ e~) to a polynomial 

form 
(c) all the components being omitted are of little importance (as yielding a rela- 

tively small or zero value). 
The form of eqs. (85)-(87) and of eq. (71) suggests that at least (a) or (b) could be 
true. If  not, we may only hope that (c) is met. According to the above assumption 
we take that the function R 3. Fq() is a polynomial R 3- F~[Oq] of relative radii 
consisting ofmonomials having the form either (81) (m = 1) or (82) (m = 2). 

Let us consider possible structures of the function F mq[o q]. First we notice that 
the two accurate coefficients G 1[o] (eq. (61)) and C~ [&] (eq. (65)) and that approxi- 
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mated one G3[O 3] (eq. (72)) do not satisfy the equalities (48)-(50) truncated up to 
the third order terms (p = 1,2, 3). However, if we take G 3 modified as below: 

G3[ol,o2, o3] = 3 R3 (93) 
RoIRo2Ro3 ' 

we arrive at the third order model for AS which is not affected by particle location 
order. 

Let vj* denote the volume fraction of thej th  component in the mixture 

. def M j x ;  Mjx;  ° 7; 
V j  ~ ~ ...... n n 77 M'  (94) 

which may replace the fraction vj in eqs. (54)-(57) 

vj = r l iv;  . (95) 

Thus, following eqs. (1), (54), (57), (84) and (93) the approximating formula for 
AS (denoted as ASa) may be written in the form of 

ASa = kB i j  - In v] + In 1 - 2-6 + + 

- 3 v ;  1 2 \ J 1  D " (96) 

Let us complete the above model by taking in eq. (92) the function 
Fq( ) ---- Fq[oq] to express the factors Aq[O q] for q -- 3, 5 , . . . ,  oc, where the polyno- 
mial R~. • Fq[o q] consists of monomials being of form (81). As there is no basis to 
distinguish between the effects of particular arguments of Iv[oq], the following 
function is proposed: 

l_,q[oq] _ 1 / q \ q-3 
(Ro)qqq_31i~=l ROi) (97) 

with the factor q3-q being used to get Fq[j q] = 1/R~. Similarly, the alternative func- 
tion F2q[o q] has the form 

F2q[oq ] ~- 1 / q \ 2q-3 
(Ro)2qq2q_31i~=i Ro,)  . (98) 

Based on eq. (92) the following recursive formula is valid: 

Aq+l = G q -  ( q -  1)Aq (99) 
q + l  

Hence, having G 2 = 7.5 and A 2 = 3 we can calculate the exact A3: 
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A 3 =  1.5. (100) 

In order to perform further analysis let us take arbitrarily that 

G p = e ~--- f o r p > 2 ,  (101) 
P 

where qo is a converging factor (~o < 1) and e denotes a constant. The factor qo may 
be positive or negative. By substitution ofeq.  (101) the series (85) is brought to the 
form 

oo oo 1 _ - 9  (102) 
 _ (-1)pPGP = e = -e °31 . 
p=3 p=3 

Thus 

e --- 9 1 ÷_____f_qo (103) ~3 

By using functions (101), (103) in eq. (92) we arrive at the formula 

~gq -3 
A q ----- 9 for q > 3 .  (104) 

q ( q -  1) 

The factors Aq[j, 0 q-l] occurring in the infinite series in eq. (54) have the following 
form: 

Aq[j, 0 q-l] = AqR:-ml-'mq[j, oq-1] , (105) 

where/-~q[-] denotes either Fq[ .] (m = 1) or F2q[ .] (m = 2), and )mq  
1 q-1 

1-~nq[j, O q-l] ---- (Ro)mq_mqmq_3 Ro, + Rj (106) 

Notice that A 3 [j, 02] is always positive and for m = 1 it is the same as the last 
term factor in eq. (96). 

By substitution of eq. (104) into (57) we arrive at the expression for the config- 
urational entropy S ° of the standard state 

_ ' { S~' = kB ~ Mj ln(x; °) + ln(1 - r/;) + 1 - 3 

9 ~ 1 f r/~ ~q-1 } _ _  1) \1  - r/;J qo2 a~=a q(q - qo q-1 , (107) 

which converges (provided that qo- r/;/( 1 - rl;) < 1) to the form of 
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S~ = kB ~ Mj lnx] ° + ln(1 - r/j) + 1 - 3 1 _--7- ~ 

911  1-  1)1n(1 )]/. 
qo 2 2(1 - r/;) ~°+ \ ~o-7 ~? 1 - r / ]  q° 

(108) 

Using eqs. (54, 105) and (108) we arrive at the formulae for the configurational 
entropy of mixing A&m (for either, m = 1 or m = 2) 

{ - ~ -+~o~  ~Slm=k.~ --lnv;+lnk-- 1-37 r/M] 1--~,; 1 go 
9[ 

+ ~  1 qo+ 1 In 1 -  -qo 
2(1 --- r/;) \ ~,': ~jo l - r / ;  

( , ,  } 9~oe-3 r/M ~q-I _...~_,(Vo2...Vo,)i.mq[j, oq_1] " 
--R3-m"'--'q(q--1)~'q=3 1--r/M] o,=1 oq=l 

(109) 

The model (109) may be inconvenient in practical use because of the infinite ser- 
ies contained in. Let us propose an approximating formula for AS being of analyti- 
cal form. One of the possible ways to reach such a model is to take the following 
Fq[Oq] in eq. (90): ( )q3 

Fq[Oq] - 1 v*Ri , (110) 
(R°)q i=1 

where the average radius of all particles replaces the radius averaged over the set 
0 q, as present in F q [0 q] (see eq. (97)). 

Let us define a variable co 

der v;Ri l _r/M Ro, ] (111) ~ )  ~ 

\ i=l I o=1 

Using the function (11 O) and the variable co we obtain 

o=1 1 - r/M (i) Aq[J'Oq-1]=R~ "p q-~--~),(~°co)q-1 (112) 

where the constant factor p is defined as 

dee 9 ( ) - 2  
= v*Ri (113) 

P ~-$ i=1 
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The resultant model (denoted as ASia) has the following form 

A S l a =  kB ~ Mj - In v s + In \-ll_r/)-- r/ J + 3 1-r/y r/; 

o=1 

+ 7  1 2(l~Yr/jo) q ° +  \~_~-y.o 1 In 1 l-r/;-- qo . (114) 

The models (109) and (114) are based on eq. (101) being taken quite arbitrarily. 
In order to get some insight into the effects on AS of modeling errors inherent in 
this assumption let us take an alternative formula for GC For example, let 

G p = CqO p , (115) 

which converges more slowly than (101). The corresponding model involving the 
function (106) has the following form: 

{ ( 1 
s l - r / M  r/y~ rb.° r/M W-, ,R) 

A&m=kBi~=lMJ - l n v ; + l n  - - ~  + 3 - -  3 - - L V o - ~ _  \ _r/) r/MJ i - r / ;  l--r/Mo= 1 o 

~ ( 3  + 2~) 1 - r/;] ~ + 2(1 -r / ; )  ~o 

+ ~ - - - ~ + 1  In 1 1 _--r/~qo ~pg(-3-+--~)q_Z~_ 3 q(q-1) 

Z " " " Z ( ' 0 ; . . .  V;q)Z"mq[oq-l,j] , (116) × 

~ 'I M,/ ol=l  oq=l 

and the model with the approximating formula (110) being taken is 

s " /'.l---r/--M r / ~  +3 r/~ 3Zvol_r/M~-~-2o2 ASza=k.j~=I M j -Inv] +m l_r/so r/MJ 1 ~  o=l 

9 ';)1 ~o2(3 3c 2cp) 2(1 r/.]) + In 1 - 1 --~7~ "q° 

+Rj3+2qo2 P (l+w)qo+--~--+ +1 ln(1-cp- 

All the models (96), (109), (114), (116), (117) contain the well-known formula 
for the configurational entropy of mixing (Flory [5]), 
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J 

z~SF = --kB ~ Mj In v~. (118) 
j= l  

Thus, the remaining terms in the proposed formulae express the entropy excess 
over the value predicted by this simplest model. 

4.3. EVALUATION OF THE MODEL PARAMETERS 

Let us apply our model to a homogeneous liquid containing the number M of 
spherical molecules. A free space attributed to each molecule (i.e. the soft part of 
the molecule) consists of a volume being a consequence of limited packing ratio of 
spheres (hard parts of molecules), and of an additional volume which makes possi- 
ble thermal vibrations of molecules. Let r/0 denote the maximal fraction of the 
hard part of particle. One can prove that 

= 6v/2 -- 0.74. (119) ~70 

It seems to be the most appropriate to take the parameter ~o as 

~o = (1 - r/0)/r/0 ~ 0.35047, (120) 

thus involving the physical constraint for r/° ( r / °<~)  in the model equations 
(107)-(117). 

In order to compare our model with other known formulae [2,3] let us derive 
the state equation [2,3] in the form of 

zodef  P V l + o O  ( F~X ~ o~ 
- - - -  = 1 + E :Bk(r/°)k ' (121) 

MkB r v \ \ 2  T k=l 

where Z ° denotes the compressibility; ~3k, coefficients of virial series; F ex, the 
excess Helmholtz free energy over that of an ideal gas under the same pressure P; 
V, volume; T, temperature. For the considered system the following relation is 
valid: 

FeX S ° 
i- ln(x *°) + 1. (122) 

M k B T  - Mka 

Hence, by virtue ofeq. (57) we arrive at the formula 

° ° ( 7 ~ ° )  q-1 
MkB7 ~Fex -- A x ln(1 - r/°) + Eq=2 Aq ~ (123) 

According to eq. (121) the state equation has the form 

Z ° = 1 - A 1 9/0 oo (Tlo)q-1 
1 - ~1o + E Aq(q -- 1) (1 -- 7?°) q" (124) 

q=2 



98 J. Duda, 3". Milewska-Duda / Evaluation of  configurational entropy 

Using the sequence {A q, q = 1, . . . ,  oo} taken for the model  (107), i.e.: A 1 = - 1 ,  
A 2 = 3, andAq = 979q-3/(q(q - 1)) for q > 2 ,  we get the formula 

(r/o792 _ 9) r/°(679- 9) 9 { ~__rl° "~ 
Z~ = 1 4 792( 1 _ r/O) t- 279(1 _ /70)2 r/o793 In \ 1 1 - r/o/ " 

Equat ion (124), if t runcated to q = 3 (see eq. (96)) gives 

(125) 

1 + 77o + (770)2 
Z° = (1 - r/o)3 ' (126) 

i.e. the well-known formula derived in completely another  way by solving the 
Percus-Yevick compressibility equation [2,4]. The best analytical formula is due to 
Carnahan  and Starling [2], 

1 + r/° + (r/°) 2 - (r/°) 3 
Z ~ s - -  (1_77o)3 (127) 

The model  (125) with 79 = 0.35047 (see eq. (120)) respects the geometrical bound 
for r/° (r/°< 0.74), while the Carnahan-Star l ing formula (127) as well as eq. (126) 
miss a physical meaning for a very high packing ratio. However,  it is known [2] that  
the model  (126) overestimates Z °, therefore it is evident from eq. (124) that any 
improvement  of it by using the model (125) needs a negative value for 79. Unfor tu-  
nately, such an improved model does no longer respect the bound for r/o. 

Equat ion (124) may be transformed into the virial series (see eq. (121)) by substi- 
tution: (1 - 770) -q = (~=o(r/°)i) q. One can prove that the virial coefficients Nk are 
expressed as 

k+l / k -  
~k = - A l  +kj~_2 ~ j _  ~)AJ .  (128) 

The well-known Carnahan-Star l ing expression [2] is 

~3k = ~ + 3k. (129) 

In table 1 the first six resultant virial coefficients are compared to accurate ones 
[2]. The coefficients A q and G p are also shown. Their values corresponding to the 
exact virial coefficients and to those of the Carnahan-Star l ing  formula have been 
computed  using eqs. (128), (99). For  the model (125) with 79 < 0 the value for 79 was 
found so as to fit (B3 exactly (79 = -43/150) .  

Using eq. (128) and a sequence Nx, N:, - . . ,  (BK of known virial coefficients one 
can compute  exact values for A 1, A : , . . . ,  A K+I, and next apply the formula (101) for 
q > K  with 79 = 0.35047, to complete the sequence up to infinity. In such a way a 
model  may be arrived at which meets both an accuracy demand and a geometrical  
bound for 7/°. 

Like eq. (125) a similar formula for Z~ may be derived based on the model  invol- 
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Table 1 
Comparison of coefficients of considered models. 

99 

Exact Carnahan- Formula Eq. (125) Eq. (125) 
Starling (126) ~o = 0.35047 tp = -0.28222 

~1 4.0 4.0 4.0 4.0 4.0 
~2 10.0 10.0 10.0 10.0 10.0 
N3 18.365 18.0 19.0 19.789 18.365 
~4 28.24 28.0 31.0 34.374 28.603 
~5 39.50 40.0 46.0 55.056 40.333 
~36 56.50 54.0 64.0 83.495 53.240 

G l 7.0 7.0 7.0 7.0 7.0 
G 2 7.5 7.5 7.5 7.5 7.5 

G 3 2.153 1.667 3.0 4.052 2.1533 
G ~ -0.91 1.5 0.0 1.065 -0.4558 
G 5 0.92 - 5.2 0.0 0.299 0.1029 
G 6 4.217 12.667 0.0 0.087 -0.0242 

A 1 -1 .0  -1 .0  -1 .0  -1 .0  -1 ,0  
A 2 3.0 3.0 3.0 3.0 3.0 
A 3 1.5 1.5 1.5 1.5 1.5 

A 4 -0.2117 -0.333 0.0 0.2630 -0.2117 
A 5 -0.0550 0.5 0.0 0.0553 0.0358 
A 6 0.1900 -1 .2  0.0 0.0129 -0.0067 
A 7 0.4667 2.667 0.0 0.0032 0.0014 

ving the sequence (115) (see eq. (116)). However, in this case the value 
= 0.35047 (being the most suitable from the physical point of view) results in 

stronger increasing of consecutive A q (q > 3). Thus, such a model seems to have no 
advantage in relation to eq. (125). 

Let us evaluate a range of ~7 ° corresponding to the liquid state. Equation (122) 
may be written in the following form: 

F e x  
- -  - -  I n  ux  , ( 1 3 0 )  
MkBT 

where Ul denotes the ratio of an ideal gas molal volume to that of the liquid, both 
having the same entropy. It can be deduced from the Trouton's rule (Barrow [21]) 
that near the boiling point ux ranges from 0.01 to 0.03. The values for ul computed 
using eq. (130), with different formulae taken to express the left hand side, are col- 
lected, in table 2. As it is seen, the parameter r/° has a value ranging from 0.42 to 
0.46 (differences between values predicted by the models under consideration are of 
little importance). On the other hand, the value 77 ° ~ 0.5 was found by simulation 
[2,3] as a solidification bound. Therefore, from the sorption viewpoint an accuracy 
of a model within the range r/° e (0.42, 0.5) is crucial. 

The values of Z and -FeX/(MkBT) predicted by the models being analysed, 
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Table 2 
Parameter  ul v.s. packing ratio r f  according to different models. 

el Fi x r,~ er ~_ e ~  Ux e ~  
cp = 0.3505 ~o = -0.282 qo = 0.3505 V~ = -0.282 

0.41 0.036 0.032 0.038 0.031 0.039 0.038 
0.42 0.030 0,027 0.032 0,025 0.033 0.033 
0.43 0,025 0.022 0.027 0.021 0.028 0.028 
0.44 0.021 0.018 0.023 0.017 0.024 0.023 
0.45 0.017 0.015 0.019 0.013 0.020 0.019 
0,46 0.014 0.012 0.016 0,011 0.016 0.016 
0.47 0.011 0.009 0.013 0.008 0.013 0.013 
0.48 0.009 0.007 0.010 0.006 0.011 0,011 
0.49 0.007 0.005 0.008 0.005 0.009 0.009 

Subscripts: a - approximated 4-term model  as used in eqs. (96), (125); 1 - the model  involving the 
sequence ,4 q as taken in eqs. (107), (126); 2 - the model  involving the sequence ,4 q as in eq. (116). 
C S -  Carnahan-Sta r l ing  formula,  

are plotted against r/° in fig. 8. The curves F ~x and F Us are practically undistin- 
guishable. 

4.4. D I S C U S S I O N  A N D  N U M E R I C A L  R E S U L T S  

The achieved results may be summarised as follows: 

zT, zA \ZCs 
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1 5 . 0 0  
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ex ex 
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~o 

Fig. 8. The values of  Z and -F~X/(MkBT) for a homogeneous  liquid. Subscripts explained in the 
footnote  to table 2. 
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(a) Based on general formulae derived in sections 2 and 3, applied for infinitesi- 
mal cells (continuous space), we arrived at the universal formula (54) for the config- 
urational entropy of mixture S M. 

(b) The formula (54) involves an infinite number of coefficients Aq[] (q = 2 , . . . ,  
oo) which are expressed in the form of universal infinite series (48)-(50), and which 
meet the universal relations (51), (52), as the value for S M has to be independent 
of indices attributed arbitrarily to particles and components (particle location 
order). 

(c) In order to compute the coefficients Aq[] suitable formulae for geometrical 
factors G~[] (p = 1, . . . ,  oo) should be found. 

(d) The factors G p [ ] depend only on geometrical parameters of particles present 
in the mixture (see eqs. (35), (38)-(41) and (66), (73)-(77)), thus further analysis 
needs the geometrical properties of the mixed particles to be specified. 

(e) The considerations made in section 4.2 relate to sphere-like particles, i.e. to 
particles having a spherical hard core. 

(f) Till the present day we derived accurate formulae for G)[o] (eq. (61)) and 
(72[02] (eq. (65)) for spherical particles. An approximation to (;3[03] is also found 
(eq. (72)). Higher order coefficients may be computed using the general formula 
(66): however, it is a much more complicated geometrical task. 

(g) The universal formulae (48)-(50), if applied to spherical particles with G) [o] 
and G}[O 2] being known, yield the form of (67)-(69), which enable us to deduce a 
general structure of a function ~q [Ro] (eq. (70)) expressing effects of particles radii 
Ro on the coefficients Aq[]. A general formula for GP[] may be written in the form 
of (78) consisting of polynomial and nonpolynomial functions of relative radii. 

(h) Further considerations are based on certain suppositions concerning the 
function 1~q [Ro]. 

(i) An astounding similarity ofeqs. (85)-(87) and the universal equality (91) sug- 
gest that the formulae (84) for A)[o] and ,42[02] may be taken, and a general for- 
mula for A q (q > 2) is of form (92). This suggests also that A q[O q] may be expressed 
in the form of a qth order polynomial function of relative radii. 

(j) The formulae (84) and (92) were taken as the basis for our model. Further 
considerations were focused on two questions, i.e.: how to get an adequate repre- 
sentation of the sequence of constant factors { G p, p = 3, . . . ,  oo}, and what mono- 
mials 3Vt[O p] should be taken to express the effects of size of particles on Aq[O q] 
for q>2.  

(k) First we proposed an approximating formula (96), i.e. the third order model 
(denoted as ASa), involving only the known factors G)[o], G2[O 2] and relatively 
well established G } [03]. 

(1) Next, two alternative formulae, i.e. FlP[O p] - eq. (97) - and F2p[O p] - eq. 
(98), were taken as the function Fq(), and two sequences (101), (115) as alternative 
representations of the factors C,r. Using the sequence (101) we arrived at the for- 
mula (109) which expresses two models, i.e. AS11 - involving Plp[o p] (97), and 
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AS12 - with 1"2p[0 p] (98). Application of the sequence (115) results in the formula 
(116) which represents the models AS21 and AS22 with functions (97) and (98) 
being taken into account, respectively. 

(m) The formulae (109) and (116) contain infinite series, and so they are not con- 
venient in use. Thus, we proposed an approximating function (110) to express 
Fq( ) in eq. (89). It has no theoretical grounds, but it enables us to reach the analyti- 
cal formulae (114) (model AS1a) and (117) (model AS2a) based on the sequence 
(101) and (115), respectively. 

(n) Using well-known thermodynamic relations the state equation for a simple 
liquid was derived in section 4.3. It was shown that the approximating formula 
(96), i.e. the model ASa, if applied to a simple liquid, leads to the well-known 
expression (126). The model (125) was found as being in very good agreement with 
the Carnahan-Starling formula [3] providing that suitable negative value for the 
parameter q9 (i.e. qo -0.282222) is taken (subscript - ) .  But the model with 

= 0.35047 (subscript +) is also interesting as it respects the physical bound for 
packing ratio (r/° < 0.74). 

The model being elaborated is aimed at the analysis of the effects of volume frac- 
tions of components and of the size of their particles on the configurational 
entropy of mixing. Thus, we should answer the question, do the arbitrary assump- 
tions mentioned in points (k), (1) and (m) affect significantly a function 
aS(%Rj). 

To this aim, having the formula proposed by Mansoori [4] (AScs) as the refer- 
ence model, we examined numerically all the proposed formulae applied to a two 
component mixture with positive (+) and negative ( - )  values for ~o being taken, 
i.e.: ASa-  eq. (98); AISllT, Z~Sl2q:- eq. (109); AS21T, z~S22qz- eq. (116); ASxa:~ -eq .  
(114); AS2~7: - eq. (117). No volume changes in the mixing process as well as the 
same packing fraction ~ff --- r/M for each component j have been assumed. The 
parameter qo has been taken to be the same as for homogeneous liquid, i.e. 
qo = 0.35047 (+) or qo = -0.282222 (-) .  

In fig. 9, the entropy predicted by all the above models is plotted against v2. It 
is expressed as the excess over the value ASF given by the formula (118) and related 
to ASF (relative entropy excess). One observes large discrepancies between 
AS12q:, z~S22q= and the remaining curves. This means that the function F 2q (eq. (98)) 
is not an adequate representation of the particle size effect (which meets our earlier 
suggestion - see point (i)) and so, these four models should be rejected. Hence, 
they are not longer analysed in further figures. The second observation is that the 
parameter qo = 0.35047 (+) yields much larger deviations from the reference curve 
AScs than qo = -0.28222 (-) .  This is explainable if one bears in mind the param- 
eters shown in table 1. Relatively small differences between the curves ASll_ and 
AS21- suggest that a choice of the sequence representing the coefficients G p is of 
little importance. This is also shown in fig. 8 and table 2 for homogeneous liquids. It 
may be seen that the curves ASlx_ and AScs are practically undistinguishable. 
The same conclusions may be drawn on the basis of figs. 10-13. In particular, in fig. 
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Fig. 9. Relat ive ent ropy excess vs. volume fraction of  larger particles,  with large packing ra t io  r/M 
and large R2/R1. Firs t  subscript  indicates the formula taken for Aq: a -  t runcated 4-term formula  (98); 
1 - sequence (101), model  (109); 2 - sequence (115), model  (116); CS - Carnahan-Sta r l ing .  Second 
subscript  shows the function rmp applied to express the particle size effect: a - approx imat ing  for- 
mula  (111), (models (114), (117)); 1 - p t h  order monomials  (m = 1, eq. (97)); 2 -  2pth order  mono-  

mials  (m = 2, eq. (98)). Third subscript: + ~o = 0.35047; - ~o = -0.282222.  

12 we compare the models under consideration using the data applied in ref. [4], 
i.e.: R2/R1 = 3, v2 = 0.9643 (M1 = M2). Discrepancies between the formula (109) 
(ASu_) and the generalized Carnahan-Starling model AScs [4] are in the same 
range of magnitude as deviations from molecular dynamics simulation data [4]. 

The above observations allows us to the conclusion that a qth order polynomial 
Flp[o p] (eq. (97)) is adequate enough to represent effects of the relative size of par- 
ticles on the entropy of mixing, and the formula (109) is practically equivalent to 
that proposed in ref. [4]. 

As far as the models ASIa_ and AS2a_ are considered for rather small R2/R1 
(R2 s <R1,3R1 >) they yield similar results. This allows us to propose the analytical 
formulae (114) or (117) as a convenient and adequate enough improvement of the 
third order formula (98) (model ASa). 

5. Final remarks 

A formal discretisation of mixture space (generalised lattice model) makes possi- 
ble a statistical analysis of configurations of mixed particles, with no restrictions 
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due to their shape. The general formulae for the number of configurations derived 
in sections 2 and 3 may be applied in two ways. By taking a cell size comparable to 
the smallest particle in the mixture one can reach a formula being a generalisation 
of Flory's model [12]. It provides a basis for a rough evaluation of particle shape 
effects on the mixing process. The second way (exploited in this paper) is based on 
the differential lattice idea. It enables us to derive the universal rigorous formula 
(54) for the configurational entropy of mixture S M involving the infinite number of 
geometrical factors G~[], each of them depending only on the shape and size of 
particles. 

The method proposed in section 4 may be used to derive the required formulae 
for G~[] with any shape of particles being assumed. As the above task is very com- 
plicated all the factors cannot be found. Thus, a final form of the model may only be 
supposed. However, accurate formulae for the first two factors G)[] and G2[] may 
be relatively easily derived and, based on certain formal properties of the model 
(54), one can evaluate the effects of higher order factors on the value for AS.  

The results obtained for the mixture of spherical particles (section 4.4) indicate 
that some arbitrary assumptions concerning possible formulae for Gf[] (p > 2) 
enable us to reach acceptable models for the configurational entropy. Each of them 
fit exactly the first two coefficients of the virial state equation. The simplest one, 
i.e. the four-term model is equivalent to that derived earlier [2,3] by solving the 
Percus-Yevick compressibility equation. The relations derived in the paper pro- 
vide a method for the systematic improvement of the model accuracy by including 
higher order terms. In this way, a general model was found which is in very good 
agreement with the formula proposed by Mansoori [4]. 

Table 1 and fig. 8 show that the predicted entropy is not significantly affected 
by the estimation errors of higher order coefficients G 3, G 4, .... It allows us to 
expect that the method presented in section 2.3 is also applicable to more complex 
molecules. 
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List of principal symbols 

Aq[oq] 
Aq 
ao 

coefficients in formulae (47), (54) defined in eqs. (48)-(50); 
coefficient A ] [jq] for identical particles; 
specific surface area of the oth particle; 
factor representing the effect of particles belonging to D\~  (lst and 
further neighbors of ~) on probability a~e ' (eq. (28)); 
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of, of, Cp the expected number of configurations of a single object k, ~, 
~e, i, respectively, having a fixed (taken at random) configuration of ob- 
jects belonging to the set D, D~\r; 

C~ ~\i the expected number of configurations of object i (having a fixed config- 
uration of D~\i) in which i is adjacent to ~; 

D set of objects arranged in lattice prior to that being placed; 
D~\i same as D, while object i is removed and ~ added to lattice; 
ek, ei index of an element of the kth, ith object, respectively; 
e~ index of an element of previously formed part ~ of object k; 
Fq ( ) a general function representing effects of the shape and size of particles 

on coefficients A q [O q] (defined in eq. (89)); 
F ex Helmholtz free energy excess (see eq. (121 )); 
G] [0 p] geometrical factors depending only on the shape and size of particles 

present in the mixture (defined in eq. (38)); 
G p constant factor G p [j P] (for identical particles); 
gek probability that a cell chosen for an element ek is eligible with respect 

to the shape of the kth object, provided that previously arranged ele- 
ments ofk  satisfy the same condition; 

ge~ same as gek for the previously formed part ~ of the kth object; 
kB Boltzmann constant; 
M the number of particles in the mixture; 
Mj the number of thej th  component particles; 
n the total number of lattice cells (volume of the mixture); 
n~ the number of vacant cells left by objects belonging to D; 
O q a sequence consisting of q indices, each of them representing geometri- 

cal parameters of a particle as the argument of functions Aq[O q] or 
Gq[oql; 

(O q [f)c cth combination of l identical indicesj within the sequence O q (j ~ O q); 
P~ probability that a cell chosen for the e~th element of ~e is vacant, provid- 

ing that the objects of D and ~ are arranged in an admissible way (def. 
(eq. (11)); 

p, q superscripts used to indicate an order of products and of factors; 
~9~\g ~.~\~ probability of non-conflict arrangement of the ith object with fixed i[f ' il~ 

configuration of D~\i objects) provided that its first element is placed in 

~.,ff\i 
il~ 

R~ 
( R o )  q 

rk 
6R 
Ar 

any vacant cell, in ~ cell, respectively; 
~il~ \i but with the lack of conflict with n assumed; same as 

radius of a sphere representing the hard part of the kth object; 
qth order product ofRo~,..., Roq; 
current value for a radius of the kth particle being located; 
thickness of a soft spherical layer in a particle; 
radius of a spherical region occupied by the vibrating center of a mole- 
cule in liquid state; 
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a M ,  s ° 

/as  
ZaSF 

6kS 

Sk 
Sk 
v;,vj 

Xk 
Xk 
x; 
Z o 

D 
Ol r~e i 

~o 
iq, e i 

rmq[oq] 
Iq, 

/ . ,0, 
M 

qo 

£2 

configurational entropy of a mixture and of its components in their 
standard states, respectively; 
configurational entropy of mixing (eq. (1)); 
approximation to AS disregarding differences in the size of particles 
(def. eq. (118)); 
component of the expression for configurational entropy contributed 
by inserting of the kth particle into the lattice (eq. (43)); 
the number of elements in a surface layer of the kth object; 
the set of surface elements of the kth object; 
volume fraction of the j th  component and of the hard part of its parti- 
cles, respectively, in the mixture; 
the number of hard part elements (volume) of the kth object; 
the set of elements of the hard part of the kth object; 
the number of elements (volume) of the kth object; 
compressibility (eq. (121)); 
probability that an element ei of the ith object, occupying the cell 
(chosen for the e~th element of ~ce), is not in conflict with ~ and with ob- 
jects belonging to the set D \ i  (def. (eq. (11)); 
probability that an element ei of the ith object occupying the cell ~ is 
not in conflict with ~c (def. eqs. (11), (16)); 
mqth  order function used to compute the value for A q []; 
a simply connected and properly shaped body, being a formed part of 
the kth particle, while its e~th element is being placed; 
tc and the next eth element of k, ~c and ~ cell; 
same as pc for the ith, oth,/th object, respectively; 
packing fraction of the j th  component particles in a standard state and 
in the mixture, respectively; 
an eligible cell chosen for joining the e~th element to n; 
the number of cells eligible for joining the e~th element to n; 
constant factor taken in eqs. (101) and (115) to express the sequence 
{GP,p = 3,. . . ,oo}; 
the number of configurations of objects in the mixture; 
the number of configurations of D-set objects in the lattice. 
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